Prospects for the Use of Mobile Operator Data in Studies of Natural and Man-Made Risk
https://doi.org/10.21686/2073-1051-2021-4-111-126
Abstract
The article proposes a conceptual substantiation of the possibility of using the cellular operators data in order to assess the population vulnerability in the natural risk studies. Cellular operators data allow obtaining information on the differentiation of the population vulnerability in a large city (the article provides the case of Moscow) to natural and manmade hazards, taking into account the actual population size and its movement within different time cycles (daily, weekly, seasonal). A reliable information of how many people are at each point of the urban space at a certain point in time will allow not only to timely assess the most likely number of people in the potential danger area, thereby simplifying the work of specialized emergencies services, but also to competently develop a set of preventive measures in accordance with the real need.
About the Authors
S. V. BadinaRussian Federation
Badina Svetlana V. - Cand. Sc. (Geography), Senior Researcher of the Research Laboratory «Regional Policy and Regional Investment Processes»
36, Stremyanny Lane, Moscow, 117997
R. A. Babkin
Russian Federation
Babkin Roman A. - Cand. Sc. (Geography), Senior Researcher of the Research Laboratory «Regional Policy and Regional Investment Processes»
36, Stremyanny Lane, Moscow, 117997
A. N. Bereznyatsky
Russian Federation
Bereznyatsky Alexander N. - Cand. Sc. (Econ.), Senior Researcher of the Research Laboratory «Regional Policy and Regional Investment Processes»
36, Stremyanny Lane, Moscow, 117997
References
1. Adhvaryu A., Uwe Deichmann. Information Economics Aspects of Risk Reduction in Urban Settings, Development Research Group, World Bank, 2009, pp. 37–52.
2. Lall S., Deichmann U. Density and Disasters: Economics of Urban Hazard Risk, The World Bank Research Observer, 2012, Vol. 27, No.1, pp. 74–105.
3. United Nations, Department of Economic and Social Affairs, Population Division (2019), World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations. 126 p.
4. Small C., Naumann T. The Global Distribution of Human Population and Recent Volcanism, Global Environmental Change Part B: Environmental Hazards, 2001. pp. 93–109.
5. McGranahan G., Balk D., Anderson B. The Rising Tide: Assessing the Risks of Climate Change and Human Settlements in Low Elevation Coastal Zones, Environment and Urbanization, 2007, No. 19 (1), pp. 17–37.
6. Baburin V.L., Badina S.V. Otsenka sotsial’no-ekonomicheskogo potentsiala territorii, podverzhennoi neblagopriiatnym i opasnym prirodnym iavleniiam [Assessment of the Socio-Economic Potential of a Territory Subject to Unfavorable and Hazardous Natural Phenomena], Vestnik Moskovskogo universiteta. Seriia 5: Geografiia [Bulletin of the Moscow University. Series 5: Geography], 2015, No. 5, pp. 9–16. (In Russ.).
7. World Risk Report 2020, Bündnis Entwicklung Hilft. Available at: http://weltrisikobericht.de/english (accessed 01 August 2021).
8. Badina S.V. Prognozirovanie sotsial’no-ekonomicheskikh riskov v kriolitozone Rossiiskoi Arktiki v kontekste perspektivnykh klimaticheskikh izmenenii [Forecasting Socio-Economic Risks in the Permafrost Zone of the Russian Arctic in the Context of Promising Climatic Changes], Problemy prognozirovaniia [Problems of forecasting], 2020, No. 4, pp. 55–65. (In Russ.).
9. Measuring the Information Society Report, International Telecommunication Union Place des Nation. Geneva, 2014, 270 p.
10. Caceres N., Wideberg J.P., Benitez F.G. Deriving origin–destination data from a mobile phone network, IET Intelligent Transport Systems, 2007, Vol. 1, No. 1, pp. 15–26.
11. Ramm K., Schwieger V. Mobile Positioning for Traffic State Acquisition, Journal of Location Based Services, 2007, Vol. 1, No. 2, pp. 133–144.
12. Pastinen V., Keskikiikonen H., Vallenius J., Kivari M., Lehto H. Paikannusmenetelmät osana henkilöliikennetutkimusta, Liikenneviraston tutkimuksia ja selvityksiä, 2017.
13. Ahas R., Aasa A., Silm S., Tiru M. Mobile Positioning Data in Tourism Studies and Monitoring: Case Study in Tartu, Estonia, Proceedings of the Inter-national Federalism. 2021. Vol. 26. N 4 (104) Перспективы применения данных сотовых операторов в исследованиях природного и техногенного риска 123 Conference in Ljubljana: Information and Communication Technologies in Tourism, Slovenia, 2007, pp. 119–128.
14. Ouředníček M., Nemeškal J., Špačkova P., Hampl M., Novak J.A. A Synthetic Approach to the Delimitation of the Prague Metropolitan Area, Journal of Maps, 2018, Vol. 14, No. 1, pp. 26-33.
15. ESSnet Big Data. 2020, European Commision. Available at: https://ec.europa. eu/eurostat/cros/content/essnet-big-data_en (accessed 15 August 2021).
16. Deville P., Linard C., Martine S., Gilbert M., Steven F., Gaughan A., Blondel V., Tatem A. Dynamic Population Mapping Using Mobile Phone Data, Proceedings of the National Academy of Sciences, 2014, Vol. 111, No. 45, pp. 15888–15893.
17. Lu X., Bengtsson L., Holme P. Predictability of Population Displacement after the 2010 Haiti Earthquake, Proceedings of the National Academy of Sciences, 2012, Vol. 109, No. 29, pp. 11576–11581.
18. Tizzoni M., Bajardi P., Decuyper A., King G., Schneider C., Blondel V., Smoreda Z., González M., Colizza V. On the Use of Human Mobility Proxies for Modeling Epidemics, PLoS computational biology, 2014, Vol. 10, No. 7, pp. 1–35.
19. Wesolowski A., Eagle N., Tatem A., Smith D.L. Quantifying the Impact of Human Mobility on Malaria, Science, 2012, Vol. 338, No. 6104, pp. 267–270.
20. Grantz K.H., Meredith H.R., Cummings D.A. et. al. The Use of Mobile Phone Data to Inform Analysis of COVID-19 Pandemic Epidemiology, Nature communications, 2020, Vol. 11, No. 1, pp. 1–8.
21. Oliver N., Lepri B., Sterly H., Lambiotte R. Mobile Phone Data for Informing Public Health Actions Across the COVID-19 Pandemic Life Cycle, Science Advances, 2020, No. 6 (23). DOI:10.1126/sciadv.abc0764
22. Parker M.J., Fraser C., Abeler-Dörner L., Bonsall D. Ethics of Instantaneous Contact Tracing Using Mobile Phone Apps in the Control of the COVID-19 Pandemic, Journal of Medical Ethics, 2020, Vol. 46, No. 7, pp. 427–431.
23. Csáji B., Browet A., Traag V.A., Delvenne J-C., Huens E., Van Dooren P., Smoreda Z., Blondel V. Exploring the Mobility of Mobile Phone Users, Physica A: statistical mechanics and its applications, 2013, Vol. 392, No. 6, pp. 1459–1473.
24. Tiru M. Overview of the Sources and Challenges of Mobile Positioning Data for Statistics, International Conference on Big Data for Official Statistics. Beijing, 2014, pp. 1–26.
25. Ratti C. Mobile Landscape: Graz in Real Time, Proceedings of 3rd Symposium on 1 & TeleCartography. Vienna University of Technology, 2005, pp. 28–30.
26. Ahas R., Silm S., Järv O., Saluveer E., Tiru M. Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones, Journal of Urban Technology, 2010, Vol. 17, No. 1, pp. 3–27.
27. Calabrese F., Diao M., Lorenzo D., Ferreira J., Ratti C. Understanding Individual Mobility Patterns from Urban Sensing Data: A Mobile Phone Trace Example, Transportation research part C: emerging technologies, 2013, Vol. 26, pp. 301–313.
28. Real Time Rome, Senseable City Laboratory. Available at: http://senseable.mit. edu/realtimerome (accessed 23 October 2021).
29. Andrienko G., Andrienko N. Spatio-Temporal Aggregation for Visual Analysis of Movements, Visual Analytics Science and Technology conference, Columbus, IEEE, 2008, pp. 51–58.
30. Ruslani A., Madjida W.O.Z., Nughroho A.R.S. The Use of Mobile Positioning Data to Obtain Accommodation Statistics: Case Study of Indonesia, Asia-Pacific economic statistics week 2019. Bangkok, 2019, 19 p.
31. Versichele M., Neutens T., Goudeseune S., Bossche van F., Weghe V.de.W. Mobile mapping of sporting event spectators using Bluetooth sensors: Tour of Flanders 2011, Sensors, 2012, Vol. 12, No. 10, pp. 14196–14213.
32. Football Cup Visitors Analysis, Habidatum, 2017. Available at: https://projects. habidatum.com/#football-cup-visitors-analysis (accessed 25 October 2021).
33. Badina S.V., Babkin R.A. Otsenka uiazvimosti nalichnogo naseleniia Moskvy k prirodnym i tekhnogennym opasnostiam [Assessment of the Vulnerability of the Existing Population of Moscow to Natural and Man-Made Hazards], InterKarto. InterGIS [InterKarto. InterGIS], 2021, Vol. 27, No. 4, pp. 184–201. (In Russ.).
34. Babkin R.A., Badina S.V. Analiz uiazvimosti naseleniia Moskvy k ugrozam prirodnogo i tekhnogennogo kharaktera (s ispol’zovaniem dannykh sotovykh operatorov) [Analysis of the Vulnerability of the Moscow Population to Natural and Man-Made Threats (Using Data from Cellular Operators)]. Sistemnoe modelirovanie sotsial’no-ekonomicheskikh protsessov: trudy 44-oi Mezhdunarodnoi nauchnoi shkolyseminara, g. Voronezh, 4–9 oktiabria 2021 g. [System Modeling of Socio-Economic Processes: Proceedings of the 44th International Scientific School-Seminar, Voronezh, October 4–9, 2021], edited by V.G. Grebennikova, I.N. Shchepinoi. Voronezh, Istoki, 2021, pp. 190–195. (In Russ.).
35. Badina S.V., Babkin R.A. Otsenka uiazvimosti nalichnogo naseleniia gorodov k prirodnym i tekhnogennym opasnostiam s ispol’zovaniem dannykh mobil’nykh operatorov [Assessment of the Vulnerability of the Current Population of Cities to Natural and Man-Made Hazards Using the Data of Mobile Operators], Zakonomernosti formirovaniia i vozdeistviia morskikh, atmosfernykh opasnykh iavlenii i katastrof na pribrezhnuiu zonu RF v usloviiakh global’nykh klimaticheskikh i industrial’nykh vyzovov (Opasnye iavleniia – III): materialy III Mezhdunarodnoi nauchnoi konferentsii [Patterns of the Formation and Impact of Marine, Atmospheric Hazards and Disasters on the Coastal Zone of the Russian Federation in the Context of Global Climatic and Industrial Challenges (Hazardous phenomena – III): materials of the III International Scientific Conferences]. Rostov-na-Donu, IuNTs RAN, 2021, pp. 325–329. (In Russ.).
Review
For citations:
Badina S.V., Babkin R.A., Bereznyatsky A.N. Prospects for the Use of Mobile Operator Data in Studies of Natural and Man-Made Risk. Federalism. 2021;26(4):111-126. (In Russ.) https://doi.org/10.21686/2073-1051-2021-4-111-126